Convergence of Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes

Franco Brezzi

University of Pavia, Italy brezzi@imati.cnr.it

Konstantin Lipnikov Mikhail Shashkov

Los Alamos National Laboratory, USA lipnikov@lanl.gov, shashkov@lanl.gov

Contents

- Brief motivation
- Mimetic finite difference method
- Meshes covered by the theory
- Main results
- Numerical experiments
- Conclusion

Motivation

- Sources of polyhedral meshes:
 - meshing of complex geometries
 - adaptive mesh refinement methods
 - multi-block meshes (e.g., non-matching meshes)
 - mesh reconnection methods (e.g., ALE methods)

Motivation

- The MFD method gives a rich family of discretization schemes with equivalent properties.
- On simplicial meshes, this family includes schemes appearing in mixed finite element methods.
- The MFD method can be formally designed on meshes with non-convex and degenerate elements.

$$|\vec{F}| = -K \operatorname{grad} p, \quad \operatorname{div} \vec{F} = b, \qquad \operatorname{div} = -(K \operatorname{grad})^*, \quad \operatorname{Null}(\operatorname{grad}) = \operatorname{const} \vec{F}$$

$$\mathbf{F}^h = -\mathbf{\mathcal{G}} \, \mathbf{p}^h, \quad \mathbf{\mathcal{DIV}} \mathbf{F}^h = \mathbf{b}^h, \qquad \mathbf{\mathcal{DIV}} = -\mathbf{\mathcal{G}}^*, \quad \mathrm{Null}(\mathbf{\mathcal{G}}) = const$$

$$\vec{F} = -K \operatorname{grad} p, \quad \operatorname{div} \vec{F} = b, \qquad \operatorname{div} = -(K \operatorname{grad})^*, \quad \operatorname{Null}(\operatorname{grad}) = \operatorname{const}$$

Four-step methodology:

- 1. Define degrees of freedom for $p^h \in Q_h$ and $F^h \in X_h$
- 2. Equip discrete spaces with scalar products
- 3. Discretize the divergence operator
- 4. Derive the discrete flux operator from discrete Green's formula

$$egin{aligned} oldsymbol{F}^h = -\mathcal{G} \, oldsymbol{p}^h, & \mathcal{DIV} oldsymbol{F}^h = oldsymbol{b}^h, & \mathcal{DIV} = -\mathcal{G}^*, & \mathrm{Null}(\mathcal{G}) = const \end{aligned}$$

Step 1. Define degrees of freedom for $p^h \in Q_h$ and $F^h \in X_h$

- lacksquare p^h is constant on each polyhedron
 - $(p^h)_E$ is the degree of freedom associated with polyhedron E

Step 1. Define degrees of freedom for $p^h \in Q_h$ and $F^h \in X_h$

- lacksquare F^h is constant on each mesh face
 - $(\mathbf{F}^h)_f$ is the normal flux component associated with mesh face f

Step 2. Equip discrete spaces with scalar products

$$[\mathbf{p}^h, \mathbf{q}^h]_Q = \sum_{E \in \Omega_h} (\mathbf{p}^h)_E (\mathbf{q}^h)_E |E| \approx \int_{\Omega} pq dV$$

$$[F^h, G^h]_X = \sum_{E \in \Omega_h} [F^h, G^h]_E \approx \int_{\Omega} \vec{F} \cdot \vec{G} dV$$

where

$$[oldsymbol{F}^h,\,oldsymbol{G}^h]_E = \sum_{i,j=1}^{k_E} oldsymbol{M_{E,i,j}}\,(oldsymbol{F}^h)_{f_i}\,(oldsymbol{G}^h)_{f_j}$$

and M_E is an SPD matrix (it is not unique!).

Steps 3. Discretize the divergence operator

The divergence theorem

$$\operatorname{div} \vec{F} = \lim_{|E| \to 0} \frac{1}{|E|} \oint_{\partial E} \vec{F} \cdot \vec{n} \, dx$$

implies

$$\left(\mathcal{DIV}\,\mathbf{F}^h\right)_E = \frac{1}{|E|} \sum_{f \in \partial E} (\mathbf{F}^h)_f |f|$$

Steps 4. Derive the discrete flux operator

■ The continuous operators satisfy Green's formula

$$\int_{\Omega} \vec{F} \cdot K^{-1}(K \operatorname{grad} p) \, \mathrm{d}x = -\int_{\Omega} p \operatorname{div} \vec{F} \, \mathrm{d}x.$$

We enforce that the discrete operators satisfy discrete Green's formula

$$[\boldsymbol{F}^h, \boldsymbol{\mathcal{G}} \, \boldsymbol{p}^h]_X = -[\boldsymbol{p}^h, \, \boldsymbol{\mathcal{DIV}} \, \boldsymbol{F}^h]_Q \qquad \forall \boldsymbol{p}^h \in Q_h \quad \forall \boldsymbol{F}^h \in X_h.$$

Meshes covered by the theory

Our analysis forbid:

- anisotropic (stretched) elements
- stretched faces
- small 2D angles

Our analysis allow:

convex elements

Meshes covered by the theory

Our analysis forbid:

- anisotropic (stretched) elements
- stretched faces
- small 2D angles

Our analysis allow:

- convex elements
- degenerate elements

Meshes covered by the theory

Our analysis forbid:

- anisotropic (stretched) elements
- stretched faces
- small 2D angles

Our analysis allow:

- convex elements
- degenerate elements
- non-convex elements

Key theoretical assumptions

For every element E and for every $G^h \in X_h$, there are two positive constants s_* and S^* s.t.

$$s_* |E| \sum_{f \in \partial E} (\mathbf{G}^h)_f^2 \le [\mathbf{G}^h, \mathbf{G}^h]_E \le S^* |E| \sum_{f \in \partial E} (\mathbf{G}^h)_f^2$$

matrix M_E is spectrally equivalent to the scalar matrix |E|I.

Key theoretical assumptions

For every element E with the center of gravity at the origin and and every $G^h \in X_h$, we have

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h \, \mathrm{d}x$$

where

$$q^1 = x,$$
 $q^1 = y$ and $q^1 = z.$

Key theoretical assumptions

For every element E with the center of gravity at the origin and and every $G^h \in X_h$, we have

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h \, \mathrm{d}x$$

where

$$q^1 = x,$$
 $q^1 = y$ and $q^1 = z.$

discrete flux operator G^h is exact for linear distribution of pressure.

Estimate for the vector variable

Theorem. Let (p, \vec{F}) be the continuous solution, (p^h, F^h) be the discrete solution and F^I be the interpolant of \vec{F} . Then

$$|||\mathbf{F}^{I} - \mathbf{F}^{h}|||_{X} \le C^{*} \frac{h}{h} ||p||_{H^{2}(\Omega)}$$

where

$$h = \max_{E \in \Omega_h} h_E.$$

Estimates for the scalar variable

Theorem. Let (p, \vec{F}) be the continuous solution, (p^h, F^h) be the discrete solution and p^I be the interpolant of p. For *convex* domain Ω , we get

$$|||\boldsymbol{p}^I - \boldsymbol{p}^h|||_Q \le C^* h \left(||p||_{H^2(\Omega)} + ||b||_{H^1(\Omega)} \right).$$

With a few additional assumptions, we get

$$|||\mathbf{p}^I - \mathbf{p}^h|||_Q \le C^* h^2 (||p||_{H^2(\Omega)} + ||b||_{H^1(\Omega)}).$$

Computing matrix M_E

matrix M_E has k(k+1)/2 unknown entries:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{12} & m_{22} & m_{23} & m_{24} \\ m_{13} & m_{23} & m_{33} & m_{34} \\ m_{14} & m_{24} & m_{34} & m_{44} \end{pmatrix}$$
 for $k = 4$ (tetrahedron)

the key theoretical assumptions result in a linear system

$$A M_E = C$$

• the solution matrix M_E is not unique !!!

Polygonal meshes

Let $p(x, y) = x^3y^2 + x\sin(2\pi xy)\sin(2\pi y)$ and

$$K(x,y) = \begin{pmatrix} (x+1)^2 + y^2 & -xy \\ -xy & (x+1)^2 \end{pmatrix}.$$

1/h	$ig \ oldsymbol{p}^I - oldsymbol{p}^h _Q$	$ \boldsymbol{F}^I - \boldsymbol{F}^h _X$
16	5.17e-2	7.38e-1
32	1.18e-2	2.44e-1
64	2.76e-3	8.45e-2
128	6.65e-4	2.89e-2
rate	2.09	1.56

Random non-matching meshes

Let
$$a = b = c = 1$$
, $K_1 = 10$, $K_2 = 1$ and $m = 3$ in

$$p(x, y) = \begin{cases} a + bx + cy^m, & y < 0.5, \\ a + c\frac{K_2 - K_1}{2^m K_2} + bx + c\frac{K_1}{K_2}y^m, & y \ge 0.5. \end{cases}$$

# cells	$ oldsymbol{p}^I-oldsymbol{p}^h _Q$	$ oldsymbol{F}^I - oldsymbol{F}^h _X$
780	1.01e-2	1.12e-1
3286	2.36e-3	4.72e-2
13482	5.73e-4	2.24e-2
54610	1.41e-4	1.09e-2
rate	2.01	1.09

Polyhedral meshes

Let $p(x, y) = x^3y^2z + x\sin(2\pi xy)\sin(2\pi yz)\sin(2\pi z)$ and

$$K(x,y,z) = \begin{pmatrix} 1+y^2+z^2 & -xy & -xz \\ -xy & 1+x^2+z^2 & -yz \\ -xz & -yz & 1+x^2+y^2 \end{pmatrix}.$$

1/h	$ oldsymbol{p}^I-oldsymbol{p}^h _Q$	$ oldsymbol{F}^I - oldsymbol{F}^h _X$
8	3.83e-2	5.35e-1
16	1.10e-2	1.43e-1
32	2.86e-3	3.58e-2
64	7.21e-4	8.94e-3
rate	1.91	1.97

Conclusion

- We developed a new methodology for the design and the analysis of the MFD method.
- We proved optimal convergence estimates.
- Possible extensions:
 - $\blacksquare h^2$ -curved faces (smooth meshes)
 - problems with a lack of elliptic regularity
 - other PDEs (Maxwell, linear elasticity, etc)
 - strongly curved faces

